
Software Engineering:

TMA 03

MATTHEW MASON
C6122243

Matthew Mason | C6122243

Table of Contents
Question 1 ... 3

a... 3

i. ... 3

ii. .. 3

b. ... 3

Question 2 ... 5

a... 5

b. ... 5

i. ... 5

ii. .. 5

iii. ... 5

Question 3 ... 6

a... 6

i. ... 6

ii. .. 6

iii. ... 6

iv. ... 6

v. .. 6

vi. ... 6

vii. .. 7

b. ... 7

c. .. 7

d. ... 9

Question 4 ... 11

a... 11

i. ... 11

ii. .. 12

b. ... 12

Question 5 ... 13

a... 13

b. ... 14

c. .. 15

d. ... 15

References .. 16

Matthew Mason | C6122243

Matthew Mason | C6122243

Question 1

a.

i.
Three groups of stakeholders that are identifiable for the BillyDoo Software System consist of the

following:

1. Customers: One concern that may influence the architecture of the design for this group is

the quality attribute, usability. Customers would be concerned with how easily they can

navigate the website, search for specific free or paid events in a location of their choice, and

reserve or buy tickets.

2. Advertisers: One concern that might influence the architecture of the design for this group is

the software’s core feature - The ability to sell or give away tickets via BillyDoo’s website for

events they are organising and how effectively the system allows them to set up, manage,

and advertise these events.

3. Venue Management: The main concern from this group that will affect the architecture is

safety. These might include a need for verification of approved events at each venue to

prevent fraud, accuracy of details of the venue such as maximum capacity for health and

safety reasons or financial concerns like commission paid on events or how non-refundable

deposits are managed in the event of cancellations.

ii.
There are a number of architectural styles that might be involved in this particular scenario.

1. Client-Server: Clicking on the link in the email opens a web browser which in turn, sends a

request to the server over a network for the specific page.

2. Layered: The Client-Server style is an example of a layered architecture with only two layers.

The client uses services provided by the layer immediately below, in this case the server, to

find and respond to the client with the requested webpage.

3. Notification: users subscribe to receive updates when a new event is published based on

event filters and these updated are sent directly to each user’s email.

4. Data Flow (Pipes and Filters): When an event is created, before a notification can be sent to

users, the event must meet a specific set of criteria for each user. Filters can be used to

determine if the set of criteria for an event matches a user’s preferences and only then will

the user be notified.

b.
An application that’s a good example of the model-view-controller (MVC) pattern is Pepakura. It

allows users to unfold 3D data into flat patterns which can be edited, printed and reassembled into

physical 3D models.

As an example, the following figures show a 3D model of a mask which is made up of vertices, faces,

and edges. This is the view the user sees and any changes to the data’s state is propagated to the

view such as when using the “unfold” button which in this case acts as a controller, processing the

underlying information of the 3D model and converting it to a 2D representation.

Matthew Mason | C6122243

The advantages of the MVC pattern using Pepakura as an example, is the view is only concerned

with displaying the 3D model, not how to change the data, meaning the domain logic can be used

with different interfaces such as the 2D and 3D windows and can be tested separately from the

interface logic.

Figure 2: Unfolded 2D version of the mask from figure
1

Figure 1: A 3D Model of a mask in Pepakura

Matthew Mason | C6122243

Question 2

a.

Figure 3: Sequence diagram illustrating the interaction between the client, proxy and real subject.

b.

i.
One way in which both the proxy and adapter patterns are the same is that they are both structural

patterns that deal with the relationships among classes and objects, using composition to control

access to another object.

In the proxy pattern, both the proxy and real subject objects realise a common interface. The proxy

objects primary purpose is to control access to the real subject, whereas in the adapter pattern, only

the adapter class realises the interface and provides the client with operations that forward request

to an object with an incompatible interface.

ii.
The degree of coupling in the proxy pattern would be loose. As both classes realise the same

interface, the signatures that have been defined can be implemented independently in each class

that realises the interface. This makes the proxy class transparent to the client so when it receives a

request it can perform some additional task if necessary and forward the request on to the real

subject. It makes each class more flexible with the ability to vary the classes independently.

iii.
A factory pattern can be used in conjunction with the proxy pattern. Where a factory or product

created by a factory realises an interface, a virtual proxy, which uses a reference to the real subject,

can be used to control access to either the creation of objects through the factory, or use of the

product created by the factory.

Matthew Mason | C6122243

Question 3

a.

i.
The main features of monolithic applications that contrast them from microservices are that all the

capabilities and services provided are placed within a single application whereas the microservice

approach takes each capability and puts them in a network of separate communicating processes. In

terms of distribution, a monolith application scales by copying the application on to multiple

workstations as opposed to microservices where flexibility allows different services to be places on

different machines.

ii.
In a microservice style architecture, the individual services are components themselves that

communicate using web service calls or messaging. These separate services afford independent run

time processing and can be independently replaced or upgraded as opposed to monolith

components which could consist of language dependant libraries making upgrading or replacement

difficult.

iii.
Microservice development teams normally organise themselves around the business capabilities

with each team focusing on communication all the way through the stack and the end users

themselves. As an example, development teams could be separated into managing services such as

orders or shipping for an online shopping experience. This is opposed to monolith applications

where development teams are focused around the technology, such as Databases, User Interfaces,

Serves, etc…

iv.
Microservice architectures organise and manage data via decentralisation. This means every service

should be responsible for its own data, its own persistence and each service can only communicate

with another services data store through its API. This has the advantage that the choice of data

persistence and data store used is individually determined by each service, for one it might make

sense to use a relational database, for another it might want to use NoSQL. It also removes the need

for integrating services through a single database.

v.
Developing and deploying an application consisting of multiple remote services necessitates an

automated way of distribution. This requires a need to design for failure and puts a lot of pressure

on having a good monitoring system in place as remote services will fail, and so, when things go

wrong, its easy to spot that an error has occurred and to be able to use the monitoring tools to

debug the issue.

vi.
The advantages of a microservice style of architecture are:

1. The ability to deploy and upgrade services independently and quickly as opposed to a monolith

application architecture where everything would need to be upgraded at the same time.

2. They give a greater degree of availability, for example if a recommendation service goes down

while shopping, you can still run your shopping cart service. Whereas is a monolith application goes

down, all services may stop running.

3. It preserves modularity and communication is purely through network interfaces so reduces the

Matthew Mason | C6122243

temptation for coupling.

4. They allow for use on multiple platforms and languages across services providing flexibility.

The Disadvantages of a microservice style of architecture are:

1. It loses simplicity and not understanding module boundaries can lead to poor design. In

comparison, a monolith application has a relatively simple and familiar approach to development.

2. Maintaining consistency becomes difficult across remote services.

3. Refactoring also becomes difficult as opposed to a monolith application where an object can be

moved from one module to another providing there is a well-defined boundary between them.

vii.
The prerequisites that are necessary before adopting a microservice approach include being able to

rapidly provision new machines, have at the very least, basic monitoring, make sure that services can

be automatically and rapidly deployed and make sure operation and applications groups are

communicating and working together.

b.
An advertiser wishes to publicize their upcoming events using the BillyDoo software system. To do

this, the website requires anyone wishing to advertise their events, free or paid, to complete the

registration process. Part of this process is to select a unique username. When the user beings typing

their username, providing it adheres to naming conventions specified by the website (such as

containing a certain number of character, capital letters, etc…) results of whether the name is

acceptable should be returned to the user within 1 second of any keyboard inactivity.

Part of Scenario Type of Value Actual Value

Source External Web browser, internet user
Stimulus Sporadic Selecting username
Artefact System BillyDoo system
Environment Normal Browser and internet connection working normally
Response Process stimuli Return confirmation that username is acceptable or not
Response Measure latency Confirmation returned with 1 second of keyboard inactivity

c.
My comments to Daniel Prendergast:

Figure 4: My comments to Daniel Prendergast

Matthew Mason | C6122243

Figure 5: Daniel Prendergast usability scenario

My comments to Jude Urwin

Figure 6: My comment to Jude Urwin

Matthew Mason | C6122243

Figure7: Jude Urwin usability scenario

d.

Part of Scenario Type of Value Actual Value

Source External Web browser, internet user
Stimulus Sporadic Selecting username
Artefact System BillyDoo system
Environment Normal Browser and internet connection working normally
Response Process stimuli Return confirmation that username is acceptable or not
Response Measure latency Confirmation returned with 1 second of keyboard inactivity in

98% of cases provided the environment is working normally

Matthew Mason | C6122243

My comments on improving my scenario: For my updated scenario I have chosen to keep things
almost the same regarding the actual value for the part and type of scenario. Based on feedback
from Samantha, I have made a slight change in the response measure which is to add some
clarification to the value. Even under normal working conditions, data may be lost, or some issues
may arise and cause the response to be slower than normal, so it helps to quantify the latency to
provide a more defined quality requirement.

Matthew Mason | C6122243

Question 4

a.

i.
The first step would be to establish the input data space for the method getCategory which returns

the type of letter based on the following four inputs:

• Length (cm) – a number in the range 0.1 to 35.3

• Width (cm) a number in the range 0.1 to 25

• Thickness (cm) – a number in the range 0.1 – 2.5

• Weight (g) – a number in the range 0.1 - 750

The input data space for the method thus consists of all the possible combinations for four values

taken from:

• {0.1, 0.2, …, 35.3}

• {0.1, 0.2, …, 25}

• {0.1, 0.2, …, 2.5}

• {0.1, 0.2, …, 750}

The next step would be to partition the data space into subdomains using use case analysis. As it is

assumed design by contract is enforced, we need not worry about testing the precondition as the

responsibility of not passing out-of-range data falls with the caller. When the dimensions of the

letter are passed to the method, the type of letter is returned, either a letter, a large letter, or a

parcel. This naturally leads to a partition of the input data space into three subdomains.

Letter: 0.1 ≤ Length ≤ 24 0.1 ≤ Width ≤ 16.5 0.1 ≤ Thickness ≤ 0.5 0.1 ≤ Weight ≤ 100

Large Letter: 24 < Length ≤ 35.3 16.5 < Width ≤ 25 0.5 < Thickness ≤ 2.5 100 < Weight ≤ 750

Parcel: 35.5 < Length 25 < Width 2.5 < Thickness 750 < Weight

The final step involves black-box testing subdomains given by the case analysis. For each subdomain,

the test data will include expected data in the middle of each subdomain. It will also include

boundary testing using values at the extreme ends of the subdomain and values close to the

extreme. For example, we can establish 5 test cases for testing the size of a letter:

 Length Width Thickness Weight

Letter (Extreme) 0.1 0.1 0.1 0.1

Letter (Close to extreme) 0.2 0.2 0.2 0.2

Letter (Typical) 14 8 0.3 50

Letter (Close to extreme) 23.9 16.4 0.4 99.9

Letter (Extreme) 24 16.5 0.5 100

However, there is also the situation where one argument value may be outside the range of what is

expected causing the value returned to be not was expected. For example:

 Length Width Thickness Weight

Matthew Mason | C6122243

Letter (Length out of range) 25 8 0.3 50

Letter (Width out of range) 14 17 0.3 50

Letter (Thickness out of range) 14 8 1 50

Letter (Weight out of range) 14 8 0.3 150

There would also be four more test cases for the situation where one argument would be outside

the range of both ‘letter’ and ‘large letter’ and return the string ‘parcel’. Following this method,

there should be 23 test cases overall.

• 5 for testing the size of a letter.

• 5 for testing the size of a large letter.

• 8 for testing arguments outside the expected range increasing the size by 1 subdomain (4 for

the increase from letter to large letter and 4 for the increase of large letter to parcel)

• 4 for testing arguments outside the expected range increasing the size by 2 subdomains

(from letter to parcel).

• 1 for testing the size of a parcel.

ii.
assert length > 0 && width > 0 && thickness > 0 && weight > 0;

b.
Unit testing involves a systematic testing of the methods used in a class combined with Test Driven

Development, which suggests tests should be written before code implementation. Design by

Contract simplify this by helping to design test cases and assertions by using the contracts pre and

post conditions and writing test around it based on an acceptable set of inputs. This allows tests to

be defined at an early stage, it helps define responsibility of checking functions, reduces code

duplication, detects code errors, provides documentation, contributes to design, refactoring and the

implementation is considered complete when all the tests pass.

Matthew Mason | C6122243

Question 5

a.

Figure 8: Code Sample A1

1 (Newmarch, 1999 - 2005)

Matthew Mason | C6122243

Figure 9: Code Sample B2

b.
Sample A: LOC Metric = 51

Sample B: LOC Metric = 35

Sample A: Cyclomatic-Complexity Metric = 6

Sample B: Cyclomatic-Complexity Metric = 10

Line Number Cyclomatic Complexity

1 1 (starts at 1)

6 2 (for statement)

9 3 (try statement – single catch line 12)

16 4 (if statement)

21 5 (try statement – single catch line 47)

27 6 (if statement)

2 (Stanley B. Lippman, 2014)

Matthew Mason | C6122243

Line Number Cyclomatic Complexity

1 1 (starts at 1)

6 2 (for statement)

9 3 (for statement)

10 4 (for statement)

11 5 (if statement)

18 6 (for statement)

20 7 (if statement)

28 8 (for statement)

29 9 (for statement)

30 10 (if statement)

c.
Sample code A consists of 51 lines of code, whereas sample code B consist of 35 lines of code. The

complexity according to the LOC metric is that sample code A should be more complex, however if

we use the cyclomatic complexity metric, its suggests that sample code A has a complexity of 6 and

sample code B has a complexity of 10 suggesting sample code B is more complex of the two. This

supports that sample code B is more complex than sample code A.

d.
For each of the examples given above, sample code B may benefit from some restructuring of code

into separate units. As a rule of thumb, any code that has a complexity of 10 or greater may benefit

from altering the code in some way such as writing helper methods. As sample code B has a

cyclomatic complexity of 10 it may benefit from restructuring.

Matthew Mason | C6122243

References
Newmarch, J., 1999 - 2005. Chapter 15: More complex Examples. [Online]

Available at: https://jan.newmarch.name/java/jini/tutorial/MoreComplex.html

[Accessed 25 04 2020].

Stanley B. Lippman, J. L. B. E. M., 2014. C++ Primer Fifth Edition. 5th ed. s.l.:Addison-Wesley.

